On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions

نویسندگان

  • Ying Cui
  • Xudong Li
  • Defeng Sun
  • Kim-Chuan Toh
چکیده

In this paper, we establish the convergence properties for a majorized alternating direction method of multipliers for linearly constrained convex optimization problems,whose objectives contain coupled functions.Our convergence analysis relies on the generalized Mean-Value Theorem, which plays an important role to properly control the cross terms due to the presence of coupled objective functions. Our results, in particular, show that directly applying two-block alternating direction method of multipliers with a large step length of the golden ratio to the linearly constrained convex optimization problem with a quadratically coupled objective function is convergent under mild conditions. We also provide several iteration complexity results for the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Q-linear Convergence of a Majorized Proximal ADMM for Convex Composite Programming and Its Applications to Regularized Logistic Regression

This paper aims to study the convergence rate of a majorized alternating direction method of multiplier with indefinite proximal terms (iPADMM) for solving linearly constrained convex composite optimization problems. We establish the Q-linear rate convergence theorem for 2-block majorized iPADMM under mild conditions. Based on this result, the convergence rate analysis of symmetric Gaussian-Sei...

متن کامل

A Majorized ADMM with Indefinite Proximal Terms for Linearly Constrained Convex Composite Optimization

This paper presents a majorized alternating direction method of multipliers (ADMM) with indefinite proximal terms for solving linearly constrained 2-block convex composite optimization problems with each block in the objective being the sum of a non-smooth convex function (p(x) or q(y)) and a smooth convex function (f(x) or g(y)), i.e., minx∈X , y∈Y{p(x) + f(x) + q(y) + g(y) | A∗x + B∗y = c}. B...

متن کامل

Linearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization

In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regulariz...

متن کامل

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

Inexact Alternating-Direction-Based Contraction Methods for Separable Linearly Constrained Convex Optimization

Alternating direction method of multipliers has been well studied in the context of linearly constrained convex optimization. In the last few years, we have witnessed a number of novel applications arising from image processing, compressive sensing and statistics, etc., where the approach is surprisingly efficient. In the early applications, the objective function of the linearly constrained co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2016